Friday, March 25, 2011

1:00 PM

Inserted from: <file://E:|Algebra 1 Part 2\Probability\Probability.docx>

New Section 4 Page 1

Probability
Probability

$$
\begin{aligned}
& \text { ty } \\
& \text { \# of of favorable outcomes } \\
& \text { total \# of outcomes (sample space) }
\end{aligned}
$$

To determine the number of outcomes, use one of the following:
-Tree Diagram
-Permutation
-Fundamental Counting Principle
-Combination
Permutation - an arrangement or listing in which order is important. (PERM) Key terms to look for:

- Arrange people or items
- Place items or people
- Order items or people
- $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$ place
- LINE UP
- Specifics given such as, President, Vice President, Secretary
Or English, science, math

Combination - an arrangement or listing in which order is NOT important.
(Combo Meal)
Key terms to look for:

- Choose a group
- Pick finalists
- Choose a certain number out of a group
- Specifics not given

The expression " n ! "is read n factorial_. This is the product of all counting numbers beginning with n and counting backwards to 1 .
$E_{x:} 6!=6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=720$
Your Turn: A) $4!=4 \cdot 3 \cdot 2 \cdot 1=24$ B) $\frac{8!}{6!}=\frac{8 \cdot 7 \cdot-6 \cdot 5 \cdot 3 \cdot 24}{4-6 \cdot 4 \cdot 3 \cdot 2}=\frac{40320}{720}=56$

Permutations and Combinations

Examples: Use permutations or combinations to determine the number of possible outcomes.

1) $P(5,4)={ }_{5} P_{4}=$ Permutation of 5 taken 4 at a time.

Total How Take the ${ }^{\text {st }} 4$ of 5 !
of choices you are choosing

$$
5 \cdot 4 \cdot 3 \cdot 2=120
$$

2) How many ways can I arrange 6 students in 3 seats? \qquad

$$
{ }_{6} P_{3}=6 \cdot 5 \cdot 4=120
$$

3) $C(6,2)={ }_{6} C_{2}=$ Combination of 6 taken 2 at a time.

$$
C=\frac{p}{2 n d+!} \quad C_{2}=\frac{6 \sqrt{3}_{2}}{2!}=\frac{6 \cdot 5}{2 \cdot 1}=\frac{30}{2}=15
$$

4) I have 20 students. How many ways can I choose 3 class representatives? Key Word: No specifics

$$
{ }_{20} C_{3}=\frac{20^{P}}{3!}=\frac{20 \cdot 19 \cdot 18}{3 \cdot 2 \cdot 1}=\frac{6840}{10}=1,140
$$

5) Determine if the following situations are permutations (P) or combinations (C).
a) Arranging books on a shelf - \square
a) Choosing 6 starters for a volleyball game - \qquad
b) Choosing positions of 6 starters for a volleyball game - \qquad p
c) Picking batting order -

$$
P
$$

d) Top 12 American Idol finalists -
e) Choosing Queen and $1^{\text {st }}$ Maid - P
f) Choosing a group of 4 students - $\frac{C}{D}$
g) Assigning seats to 4 students - \qquad P
h) Lining up students - \qquad
i) Creating a playlist -

j) Ordering my playlist according to songs I listen to most -

